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We present the Sparse Synchronous model (SSM) of computation, which allows a programmer to specify software timing

more precisely than the traditional łheartbeatž of mainstream operating systems or the synchronous languages. SSM is a

mix of semantics inspired by discrete event simulators and the synchronous languages designed to operate in resource-

constrained environments such as microcontrollers. SSM provides precise timing prescriptions, concurrency, and determinism.

We implement SSM in SSML, a toy language along with a runtime system that includes a scheduler, memory manager, and

an interface that works with an RTOS to keep the model synchronized with the real world. Experimentally, we ind our

implementation is able to perform jitter-free I/O in the 10s of kHz on a microcontroller.

CCS Concepts: · Computer systems organization→ Real-time languages; Real-time system speciication.

Additional Key Words and Phrases: real time systems, concurrency control, computer languages, timing

1 INTRODUCTION

A colleague, who trains rats to perform simple tasks, needed control over stimuli timing and measurement of
response timing. The usual ad hoc solution of writing C programs for a microcontroller with timers requires a
sophisticated programmer (e.g., not the typical biologist) and is diicult to maintain across diferent hardware.
Our colleague had moved to a microcontroller running a cyclic executive that simulated a inite state machine
stored in an array, but found this model limiting and the timing precision insuicient. Meanwhile, rats are not
periodic enough for a real-time operating system (RTOS) or the sample-driven implementation style typical of
the synchronous languages [4].

Our Sparse Synchronous Model (SSM), an earlier version of which we presented elsewhere [12], was designed
to address these needs. Our goals were precise (µs-level) timing speciication and measurement, deterministic
concurrency, and platform-speed-independent I/O. We call the model łsparsež because its synchronous execution
model is not driven by a periodic timer, and supports advancing time by arbitrary increments between instants
of computation. Since then, we have added functional language features such as recursion, algebraic data types,
and automatic memory management, and validated our technique on real hardware under existing RTOSes.
Consider the signal generator program shown in Figure 1, which is written in SSML, the new language we

present here. This program generates a square wave signal whose frequency can be adjusted by two buttons. The
entry point of the program, main (lines 12ś15), takes handles for the two buttons (button1 and button2) and a
GPIO pin (out). The main function creates a shared variable hPeriod (line 13) that determines the half-period of
the square wave, and runs sigGen and sigCtl concurrently (lines 14ś15).

The sigGen function (lines 1ś5) generates a precisely timed square wave on the GPIO pin by scheduling future
output events and blocking on them. It consists of an ininite loop that schedules a toggle update to the GPIO
pin (lines 3ś4), then blocks until the update occurs (line 5). In line 4, the after directive schedules the update
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1 sigGen out hPeriod =

2 while True do

3 let delay = deref hPeriod ; // How long to sleep

4 after delay, out← not (deref out) ; // Toggle value of out

5 wait out // Block until out is updated

6 sigCtl button1 button2 hPeriod =

7 while True do

8 wait button1 | button2 ; // Wait for either button to be pressed

9 if written button1 == now // Was button 1 pressed?

10 then hPeriod← deref hPeriod ∗ 2 // Double the half-period

11 else hPeriod← max (deref hPeriod / 2) 1 // Halve the half-period

12 main button1 button2 out =

13 let hPeriod = ref (usec 1000); // Shared variable

14 par sigGen out hPeriod // Generate a square wave

15 & sigCtl button1 button2 hPeriod // and watch buttons

Fig. 1. A signal generator program. sigGen generates a square wave on the out signal whose period is set by hPeriod, which
can be doubled and halved by pressing the button1 or button2 inputs.

according to the time of each loop iteration, independent of processor speed. Meanwhile, sigCtl waits for input
from either of the two buttons (line 8) and doubles or halves the hPeriod variable depending on which button
was pressed (lines 9ś11).

Splitting up sigGen and sigCtl is a natural way to divide the two responsibilities of the program and improves
code modularity. They run concurrently; neither terminates. SSM’s deterministic semantics guarantee the
absence of data races, in contrast to non-synchronous languages that typically require explicit yet error-prone
synchronization to ensure determinism.

Our primary goal was the precise speciication and measurement of real-time events. Our model treats time as
a irst-class object, like a discrete-event simulator. Inspired by the synchronous languages [4] and Ptides [31],
an SSM system operates according to model time, which advances in discrete instants. In lines 2ś5, the delay
between sigGen’s toggle events is exactly the time set by the hPeriod variableÐmodel time does not advance
outside of blocking statements like wait.

Model time is discrete and not dense, precluding Zeno-like behavior because there is ultimately a smallest time
step. For platform-independence, the fundamental time quantum is not visible to SSM programs. An SSM system
only manipulates physical time units (seconds, milliseconds, etc.): the runtime is responsible for converting the
microseconds (usec) speciied in line 13 to the corresponding number of ticks used by each platform’s timing
hardware.
Our runtime system isolates an SSM program from the passage of physical (wall-clock) time, preserving the

meaning of SSM programs across platforms. For both timing precision and eiciency, SSM does not use the
periodic sampling approach typically adopted by synchronous language implementations, where the system
performs computation in steps triggered by, say, a 10ms periodic timer. Though this sample-driven approach is
straightforward to implement, the period must be long enough to accommodate work performed in each instant,
limiting timing precision. Instead, our interrupt-driven runtime sleeps until the next active instant, using a precise
hardware timer to synchronize with physical time. With our approach, the frequency of our signal generator is

ACM Trans. Embedd. Comput. Syst.



The Sparse Synchronous Model on Real Hardware • 3

not limited by a low-speed periodic timer, and also avoids unnecessary wake-ups when a lower frequency is
requested.
SSM provides deterministic concurrency by totally ordering the execution of concurrent tasks within an

instant. Speciically, it uses cooperative multitasking with a programmer-prescribed order: in the signal generator
program, sigGen takes priority over sigCtl when they run in the same instant, because sigGen appears irst
in the par invocation in lines 14ś15. By contrast, discrete-event models are usually nondeterministic, as they
erroneously treat simultaneous events (with identical timestamps) as order-independent. While simply prohibiting
simultaneous events might seem an attractive solution, simultaneity seems to be inherent to concurrent systems.
We wanted recursive function calls, so SSM is built around function activation records that are created and

destroyed as SSM routines are called and return. In addition to local variables and linkage to its caller, a routine’s
activation record stores its control state when it is suspended waiting for an event and bookkeeping used by the
runtime system to determine when to resume.
In this paper, we present SSML, a toy language that embodies SSM semantics (Section 2). We describe our

compilation scheme (Section 3) and runtime implementation (Section 4), and discuss how we embedded this
runtime in an existing real-time operating system to interact with the environment (Section 5). We evaluate the
performance of our system on real hardware (Section 6) and ofer comparisons to related work (Section 7).

The source code for our runtime system is available at https://github.com/ssm-lang/ssm-runtime.

2 SEMANTICS

2.1 Informal presentation

We illustrate the semantics of the Sparse Synchronous Model through łSSML,ž a toy language with functional
features such as immutable data and algebraic data types, but no irst-class functions or closures; imperative
features such as mutable references, assignments, and loops; and synchronous features such as blocking parallel
evaluation and delayed assignment. Functions deined in SSML are not necessarily pure; they are allowed to
incur side efects, such as assigning to references or allowing model time to advance. Figure 2 is a contrived
recursive Fibonacci example in SSML; Figure 3 shows the abstract syntax of the language; Figure 4 lists some
built-in types and functions.

The Fibonacci example in Figure 2 illustrates many of the novel features of SSML: mutable references, scheduled
future updates to references, blocking waits on such updates, and parallel evaluation. Control starts at main in
line 12, which begins by using the built-in ref function to create a new mutable integer value referred to as r
with an initial value of 0. These mutable references function as synchronized communication channels among
concurrent threads. The main function then invokes the ib function in line 13, with arguments that represent
the Fibonacci number to be computed and the reference r, where the result will be placed. Normal values, such as
n, are immutable and passed by value; mutable references can both be updated immediately and scheduled to
be updated later. Once ib terminates, main waits for r to be written (ib schedules a future update to r before it
terminates), then calls print to display the value held by reference r, the deref function returns the current value
of a reference.

The ib function in lines 4ś10 takes two arguments n and r. In the base case, where n is less than 2, ib schedules
a 1 to be written to r exactly one second after the ib function was invoked. Scheduling a future update to a
reference is one of SSML’s key temporal primitives. The ib function then terminates instantly. SSML adopts the
synchronous model of time in which everything except wait is treated as running in exactly zero time [4].

In the recursive case, ib creates two new references r1 and r2 (lines 8 and 9) before spawning the execution of
three functions in parallel: two recursive calls to ib, which will place their results in r1 and r2, and a call to the
sum function to add and return their results. The par does not terminate until all three of its parallel branches
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1 sum r1 r2 r = // Ref Int -> Ref Int -> Ref Int -> ()

2 par wait r1 & wait r2 ; // wait for both r1 and r2

3 after sec 1, r ← deref r1 + deref r2

4 ib n r = // Int -> Ref Int -> ()

5 if n < 2 then

6 after sec 1, r ← 1 // Base case, assigned after 1 second

7 else

8 let r1 = ref 0 ;

9 let r2 = ref 0 ;

10 par ib (n−1) r1 & ib (n−2) r2 & sum r1 r2 r

11 main n = // Int -> ()

12 let r = ref 0 ;

13 ib n r ;

14 wait r ;

15 print (deref r)

Fig. 2. A contrived Fibonacci example in SSML with delayed assignment (ater), waiting for variable writes (wait), and
parallel evaluation (par).

have terminated. This ability to spawn multiple, concurrent threads of control is another key temporal feature of
SSML.

The threads forked by a par are evaluated left-to-right in each instant, ensuring that if a reference is written in a
thread, the change is immediately visible to all threads to its right. However, because the ib threads communicate
with sum through a delayed assignment, this detail does not afect this example’s result.

The sum function waits for both the r1 and r2 references to be written (line 2), then schedules their sum to be
written to r after one second and terminates instantly. Since r1 and r2 are references, their values are obtained by
applying the deref built-in function.
Figure 4 lists types and functions deined in the standard library. Programs consist of algebraic type and

function deinitions. Algebraic data types (ADTs) are polymorphic and follow the basic ADTs of ML-family
languages, including OCaml and Haskell: a type constructor starts with an uppercase letter (e.g., Bool) with zero
or more type variables (that start with a lowercase letter) as arguments. Each type constructor deines one or
more data constructors (which also start with an uppercase letter, e.g., True), each associated with zero or more
payload ields of some speciied type. Types (e.g., of payload ields) can be a data constructor passed zero or more
types as arguments, a function type written with an inix→ , or a type variable. Types may be polymorphic, so

type List a = Cons a (List a) | Nil

is the usual polymorphic List type; List Bool is a list of Booleans, List Int is a list of integers, and List (List Int)
is a list of integer lists.

Figure 3 divides SSML expressions (which always produce a value) into four groups. The irst group describes a
pure functional language with sequential evaluation: expressions are data łvariablesž (lowercase names, e.g., foo);
data constructors (uppercase names, e.g., True), which must have all their arguments provided, if any; literals (e.g.,
42); binary operations (e.g., a + 3); function calls, which must have all their arguments provided (e.g., foo 3 4);
local variable deinitions, written with a semicolon ; to emphasize that the new variable’s value is evaluated
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program ::= [ type-def | id [ id ]+ = expr ]∗

type-def ::= type tcon-id tvar-id∗ = dcon-id type∗ [ | dcon-id type∗ ]∗ Algebraic data type

type ::= tcon-id [ type ]∗ | type→→ type | tvar-id

expr ::= id Data variable (lowercase)
| dcon-id [ expr ]∗ Data constructor (uppercase)
| literal Literal constant, e.g., 42
| expr un-op expr Unary operators
| expr bin-op expr Binary operators
| id [ expr ]+ Function Call
| let id = expr ; expr Let-deinition
| match expr with pattern→→ expr [ | pattern→→ expr ]∗ Pattern match
| if expr then expr else expr Conditional

| par id [ expr ]+ [ & id [ expr ]+ ]∗ Parallel evaluation

| ref expr Create a new reference with initial value
| deref expr Return a reference’s value
| written expr Return the last model time a reference was written
| expr ←← expr Instantaneous assignment to reference
| expr ; expr Sequencing
| while expr do expr Loop

| after expr , expr ←← expr Delayed assignment
| wait expr [ | expr ]∗ Suspend waiting on references
| now The current model time

pattern ::= dcon-id [ pattern ]∗ | id | _

Fig. 3. Abstract syntax of SSML. Brackets [], bars |, asterisks ∗, pluses +, and question marks ? denote syntactic grouping,
choice, zero-or-more, one-or-more, and zero-or-one. Tokens are bold.

type () = () The unit type and its one data constructor
type Bool = True | False The Boolean type
type Int = 0 | 1 | 2 | · · · The integer type
type Time = . . . The abstract model time type
type Ref a = . . . The polymorphic reference type

sec expr Treat number as a number of seconds : Int→ Time
msec expr Treat number as a number of milliseconds : Int→ Time
usec expr Treat number as a number of microseconds : Int→ Time

Fig. 4. SSML built-in types and functions.

before the body (e.g., let a = foo 3 ; a + 1 evaluates foo 3, binds it to a, then evaluates and produces a + 1); and
pattern matches: multiway conditional constructs that evaluate an expression, compare the data constructor of
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1 timeout2 t a b =

2 let tt = ref () ;

3 after t , tt ← () ; // Schedule a pure event

4 wait a | b | tt // Wait for a, b, or tt

5 main env =

6 let a = new 0 ;

7 let b = new 0 ;

8 timeout2 (sec 3) a b

Fig. 5. Expressing timeout behavior. Since a wait statement resumes as soon as any of its variables are writen, adding a
łtimeoutž variable tt and scheduling it to be writen in the future just before a wait efects a timeout mechanism. Here, since
a and b are not writen beyond initialization, main will resume ater 3 seconds and both written a and written b will be 0,
indicating they did not cause the timeout.

the resulting value against the patterns, bind the payload ields to the named ield identiiers (or discard them in
the case of _), and then evaluate the associated expression.
The par construct evaluates multiple function calls in parallel and terminates when all of them have been

evaluated. The context where each function call is evaluated is called a process. Within each instant, the various
branches of a par are executed in order from left to right, ensuring any side-efects (described below) are evaluated
in a deterministic order.

Most SSML values are immutable, but like other ML-family languages, SSML has references to mutable values.
References are obtained and initialized via allocation (ref), read via dereference (deref), and written to via
assignment (← ). References are used as communication channels between concurrent processes. Like condition
variables in traditional threaded code, references in SSML łannouncež when they are written, and wake up
processes that suspended to wait on them (described below). However, unlike threaded code with condition
variables, concurrent computation in SSML is totally ordered, ruling out data races.

SSML provides two primitives for temporal control: after, which schedules a delayed assignment to a reference;
and wait, which suspends the calling process until at least one of a set of references is written to.

A delayed assignment (after) schedules a particular reference to be assigned to in a later instant; the delayed
assignment itself does not take any model time to evaluate. In Figure 2, both after statements (in lines 3 and 6)
schedule an update to r one second in the future. Time delays may not be zero (normal assignment statements
are used for this) or negative. SSML only allows one outstanding update per reference; an update overwrites any
pending update. This design avoids an unbounded accumulation of updates and eliminates nondeterminism that
could arise from instants with multiple scheduled updates to the same reference.
A wait expression causes the current function to suspend execution in the current instant and reawaken

in the next instant in which any of the given references have been written. Unlike discrete-event languages
like VHDL [28] designed for digital logic simulation, SSML routines are awakened by any write to a reference,
not just writes that change the reference’s value. We chose the event-on-write policy because we wanted to
make events explicit, rather than merely using them to model continuous behavior. Our policy enables us to
model pure events through variables that only take a single value, łunit,ž written as (), and to allow variables to
convey sequences of values without two identical values in sequence being inadvertently merged. For instance,
in Figure 5, the tt reference conveys a pure event to signal a timeout for the wait in line 4. SSML can still express
VHDL’s event-on-change policy by enclosing each assignment in a conditional that only writes to a reference if
its updated value difers from its previous one.

wait expressions are the only ones that directly advance model time; others may incur delays if they cause a
wait to be invoked. For instance, a function call will block until the callee returns, so model time will pass if the
callee waits, e.g., timeout2 in Figure 5. All other expressions terminate in the instant they were started. SSML
adopts the synchronous hypothesis, which insists all instants are evaluated atomically, so that SSML programs’
speciied real-time behavior do not depend on the timing characteristics of the platform they are executed on.
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1 foo a =

2 wait a ;

3 a ← a ∗ 2 // Runs at 1 second, but after bar

4 bar a =

5 wait a ;

6 a ← a + 4 // Runs at 1 second, before foo

7 main env =

8 let a = ref 0 ;

9 after sec 1, a ← 1 ;

10 par bar a & foo a // bar will run before foo

11 print (deref a) // 10

Fig. 6. Children of a fork always execute in order: at 1 second, a write to a awakens routines first and second, which execute
in that order.

The written function returns the model time at which a reference was last written and now evaluates to
the model time of the current instant. When a process unblocks from waiting on multiple references, testing
written r = now indicates whether r was responsible for waking the process.

While par expressions are conjunctiveÐthey block until all the called functions have terminatedÐwait

expressions are disjunctiveÐthey resume when any of their references are written. This distinction explains why
we evaluate two wait expressions in parallel in Figure 2 (line 2): wait r1 | r2 would have terminated after only
the irst of r1 and r2 had arrived, whereas sum wants the new values of both r1 and r2. Line 2 also behaves as
desired when r1 and r2 arrive simultaneously.

In each instant, the children of a parallel expression are executed in the order they are listed. Figure 6 illustrates
this policy: at 1 second, the delayed assignment to a will wake up both foo and bar. However, because bar appears
before foo in the par expression on line 10, bar will run irst, reading a’s new value of 1 and changing it to 5.
Then, foo will run, multiplying a by 2 to produce 10.

To perform I/O, SSML programs interact with input and output references. These references are given to main
as parameters and abstract the external environment, akin to how C programs may communicate with hardware
peripherals via mapped memory. The runtime is responsible for conveying the environment via these references:
input references may be externally updated at the beginning of an instant, while output references produce some
external side efect (invisible to the SSML program) when assigned to. Otherwise, these references behave the
same as regular SSML references.

2.2 Formal semantics

SSML is a call-by-value, pass-by-value functional language; we formally present the semantics of SSML as a
term rewriting system in the style of Crank and Felleisen’s reduction semantics [10, 24]. Our reduction rules
are deined for a subset of SSML (focused on the novel aspects of the language), described as a lambda calculus
SSMΛ whose syntax is shown in Figure 7. Figure 10 illustrates how these rules operate on a small example.

2.2.1 Programs. SSMΛ programs are expressions e that consist of other expressions and values v, which include
primitive functions for references, assignment, and waiting. For example, after d, r ← v becomes the expression
after d r v, while wait x | y | z is written wait x y z. par is not encoded as a built-in because its operands are
not evaluated the same way as regular arguments. Instead, it appears as an associative preix binary operator in
SSMΛ: par a & b & c is equivalent to both par (par a b) c and par a (par b c) in SSMΛ.

SSMΛ constructs are more primitive than those in SSML. For example let expressions let x = d ; b become an
application of an anonymous function (�x . b) d. SSMΛ includes timestamps and the unit value, but for brevity,
we omit all other literals, algebraic data types, pattern matches, conditional expressions, and while loops; Pottier
& Rémy [24] explain how they could be added.
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e ::= Expressions:
| v Value
| e e Application
| par e e Parallel evaluation

v ::= Values:
| x Named variable
| t Timestamp value
| () Unit value
| m Memory location†

| � x . e Function
| ref1 Allocation
| deref1 Dereference
| written1 Last written time
| after3 Delayed assignment
| assign2 Instant assignment
| wait+ Wait for updates
| check+ Check for updates†

| suspend+ Suspend execution†

s ::= Suspended programs:
| suspend v+ Suspended primitive
| par s s Suspended parallel
| E[�] Suspended evaluation
| v Completed evaluation

E ::= Evaluation contexts:
| • Hole
| E e Left of application
| v E Right of application
| par s E Left of parallel
| par E e Right of parallel

†Memory locations�, check, and suspend only appear in

programs during evaluation.

Values � include primitive functions such as ref; subscripts

denote their arity (+ is one or more).

�+ denotes one or more values.

E[�] is the expression produced by substituting � into the

hole • of evaluation context E.

Fig. 7. Abstract syntax for SSMΛ. Programs are expressions � that may include values � . Suspended programs � cannot be
reduced further in the current instant but have not terminated. Evaluation contexts E identify where reduction may occur
within the context of a larger program.

Three constructs are never produced directly from SSML programs, and are only created while an SSMΛ

program is running: memory locations, used to index values stored in the heap; check; and suspend. These
latter two encode wait expressions that are actively checking for updates or have suspended for the rest of the
execution.

2.2.2 State: Events, the Heap and the Event ueue. The state of an SSMΛ program includes the current model
time, a heap � , and an event queue � . Both the heap and event queue are partial maps from memory locations�
to events, which are value-timestamp pairs written �@� . We use subscripts to extract the timestamp and value of
an event, i.e., (�@�)� = � and (�@�)� = � .

In both partial maps, the memory locations are the indices for SSMΛ’s heap-allocated references. An event in
the heap holds both the current value of its variable and information about when it was last written, used bywait

to determine when to resume. Meanwhile, events in the event queue represent outstanding scheduled updates,
where the timestamp records when the update will take place and the value stores the value to be assigned. Note
that a memory location may be present in the domain of the heap but not that of the event queue; this situation
happens when there is no pending update to that location.

Advancing time involves moving events from the event queue to the heap, replacing the existing event (value)
of the variable on the heap. Time is advanced by the S-Tick rule, described below.

2.2.3 Execution. The execution of an SSMΛ program proceeds in two alternating phases. In the irst phase
(S-Reduce), a program is reduced (evaluation contexts E control the reduction order) to either a value � , indicating
the program has terminated, or a suspended program � that indicates what the program will do in a future instant.
During this irst phase, every reduction sees the same model time. In the second phase (S-Tick), time is advanced,
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⟨�, �, �⟩
�
−→ ⟨�′, � ′, � ′⟩

⟨�, E[�], �, �⟩⇝ ⟨�, E[�′], � ′, � ′⟩
(S-Reduce)

� < � ′ � ′ ≤ min{� (�)� |� ∈ dom(�)}

� ′ (�) =

{

�@� ′ when � (�) = �@� ′

� (�) otherwise
� ′ (�) =

{

undeined when � (�) = �@� ′

� (�) otherwise

⟨�, �, �, �⟩⇝ ⟨� ′, [suspend→hek]�, � ′, � ′⟩
(S-Tick)

Fig. 8. Rules for the inter-instant step relation⇝ between configurations of the form ⟨time, program, heap, event queue⟩.

S-Reduce takes a step within an instant (using reduction rules, denoted by
�
−→ ); S-Tick advances between instants on

suspended programs.

assignments scheduled for that time are made, and every point in the program that was waiting on a variable
update (suspend) is awakened to check on its variables (check).

Figure 8 deines the rules for the two phases, which proceed as a series of step relations⇝ between conigura-
tions: 4-tuples ⟨�, �, �, �⟩ that consist of the current time � ; the program we are evaluating � ; the current values of
variables, stored as events in the heap � ; and future values of variables, stored as events in the event queue � .
The S-Reduce rule takes steps in the irst phase to evaluate expressions within an instant, without advancing
time; the S-Tick rule steps between instants.

2.2.4 Steps within an instant. The S-Reduce runs the program in an instant by taking small steps of the form

⟨�, �, �⟩
�
−→ ⟨�′, � ′, � ′⟩, where the expression � is a tiny part of the program being evaluated (the redex), and both

the heap � and the event queue � may be updated. The current (model) time, � , however, does not change during
these small steps. This is the synchronous hypothesis: instructions do not advance time; only scheduled events
do.

The S-Reduce rule enforces a total evaluation order through an evaluation context E, which speciies a unique
łholež (•) where a reduction may occur within the context of a larger program. For example, the evaluation
context of the form E e allows a function to be reduced before its argument is applied, whereas v E mandates
that the function be reduced to a value before the argument is evaluated. Together, these impose an applicative,
left-to-right evaluation order: the function must be reduced before its argument. Similarly, the par E e and par

s E forms regulate the evaluation order between par branches, by forcing the left branch of a par to be fully
reduced (i.e., to a suspended program or value) before reductions to the right branch may begin. We write E[e]
to denote the expression produced by substituting redex � into the (unique) hole of evaluation context E.

Figure 9 lists the reduction rules used by R-Reduce within an instant:

R-Beta is the standard beta-reduction rule, which insists its argument be a fully-reduced value � . The notation
[� → �]� means to substitute � for all free occurrences of � in � .

R-Join terminates a par construct when both of its branches have terminated (were reduced to values as opposed
to suspended programs). This rule returns unit, discarding the values of the two branches. The branches
could have written their values to the heap or event queue.

R-Ref allocates a fresh memory location� on the heap and instantly assigns it to value � . Here, łfreshž means a
new memory location that is not currently in the domain of the map, i.e.,

dom(�) = {� | (� ↦→ �@�) ∈ �}
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⟨(�� .�) �, �, �⟩
�
−→ ⟨[� → �]�, �, �⟩ (R-Beta) ⟨par �1 �2, �, �⟩

�
−→ ⟨(), �, �⟩ (R-Join)

� ∉ dom(�)

⟨ref �, �, �⟩
�
−→ ⟨�, [� ↦→ �@�]�, �⟩

(R-Ref) ⟨assign� �, �, �⟩
�
−→ ⟨(), [� ↦→ �@�]�, �⟩ (R-Assign)

� > 0

⟨ater � � �, �, �⟩
�
−→ ⟨(), �, [� ↦→ �@(� + �)]�⟩

(R-After) ⟨deref �,�, �⟩
�
−→ ⟨� (�)� , �, �⟩ (R-Deref)

⟨written�,�, �⟩
�
−→ ⟨� (�)� , �, �⟩ (R-Written)

⟨wait�1 . . .�� , �, �⟩
�
−→ ⟨suspend�1 . . .�� , �, �⟩ (R-Wait)

∃� ∈ {1, . . . , �}, � (�� )� = �

⟨hek�1 . . .�� , �, �⟩
�
−→ ⟨(), �, �⟩

(R-Unblock)

�� ∈ {1, . . . , �}, � (�� )� = �

⟨hek�1 . . .�� , �, �⟩
�
−→ ⟨suspend�1 . . .�� , �, �⟩

(R-Block)

Fig. 9. Reduction rules between instantaneous configurations. R-Ref, R-Assign, R-After, R-Deref, and R-Written create,
write, schedule, and read events on the heap and event queue; R-Wait, R-Unblock, and R-Block handle blocking waits on
heap values.

and to assign an event �@� to location� in the heap or event queue, we deine

( [� ↦→ �@�]�) (�′) =

{

�@� when�′ =�;

� (�′) otherwise.

R-Assign instantaneously assigns the value � to previously allocated memory location�.
R-After schedules an event strictly in the future, i.e., value � will be assigned to� on the heap at time � + � > � .

Note that this operation will overwrite any pending event on� and is the only reduction rule that modiies
the event queue (S-Tick updates the queue between instants).

R-Deref returns the current value of (heap) memory location�.
R-Written returns the time at which (heap) memory location� was last written.
R-Wait forces a wait construct to block when it is irst executed (even if one of the listed memory locations has

just been written) by turning it into a suspend, one of the choices for a suspended program � .
R-Unblock terminates a check construct (a rewritten suspend; see below) when at least one of the variables

(memory location�� ) it is waiting on has been written in the current instant � .
R-Block is the opposite of R-Unblock: when none of the variables the check is waiting on were written in the

current instant, it turns back into a suspend that can be awakened later.

S-Reduce applies these rules to reduce a program in a particular instant into either a value � , which cannot be
further reduced, or into a suspended program � , which express programs that cannot be reduced further in the
current instant.
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2.2.5 Steps between instants: the S-Tick rule. Once the program has been reduced as much as possible in the
current instant (i.e., transformed into suspended program form as deined in Figure 7), the S-Tick rule does three
things: advances time to � ′, moves events at time � ′ from the queue � to the new heap � ′, and łwakes upž all the
suspend constructs by rewriting them to check. Those suspend expressions were either wait constructs that
had just executed and blocked (R-Wait), or were check constructs that continued to block because none of their
awaited variables had been written when they were last reduced (R-Block).

The choice of the next time � ′ is what gives the sparse synchronous model its name: instead of always advancing
to the łnextž time step as is done in the more traditional synchronous languages, SSMΛ allows the implementation
to choose any time between the current time (i.e., � < � ′) and the time of the earliest queued event. An eicient
implementation will usually choose to łsleepž as long as it can and only resume at the time of the next queued
event, but the semantics are such that a system may wake up before the next event, at which point it would
discover there is nothing to do and eventually suspend again. Note that the choice of � ′ is what makes the event
queue behave as a queue: the bound on � ′ is exactly the time of the soonest event in the event queue.

Once the next time � ′ is selected, the new heap � ′ and event queue � ′ are formed by removing every event in
the queue at time � ′ and placing it in the heap, overwriting the previous event/value. Adding an event to the
heap here mimics R-Assign, but only S-Tick dequeues events.
Finally, every suspend in the suspended program is rewritten into a check, which both transforms the

suspended program into an expression suitable for R-Reduce and łwakes upž each of the blockedwait constructs.

3 COMPILING SSML

Our formal semantics specify execution in terms of a series of rewrites, but this is not a practical implementation
strategy. Instead, we compile SSML to eicient C code that leverages a language runtime (Section 4) to exhibit
the same behavior as the source program. In this section, we discuss our compilation scheme for SSML programs
and platform-generic aspects of the runtime.

3.1 Compiling functions

Each SSML function � is compiled into two C functions: an enter function that allocates and initializes � ’s
activation record and a step function that performs the work of � in a single instant, e.g., from when it is resumed
by some event to when it suspends.
Unlike C functions, SSML functions have the ability to suspend and resume between the execution of other

functions. To enable this behavior, we maintain the local state of each SSML function in a runtime-managed
activation record rather than using C’s native stack. Each SSML function has its own specialized activation record
type that stores (let-bound) local variables, arguments, and other runtime data.

Each activation record starts with the generic act_t header shown in Figure 11 to allow the scheduler to manage
them generically. Speciically, it is always safe to cast a pointer to a function-speciic activation record to an act_t
pointer. Figure 12 shows a small function we will use as a running example; Figure 13 shows the layout of its
activation record.
The generic activation record header maintains information used to resume executing its suspended step

function: a pointer to that step function, its control state (an encoded program counter, i.e., where to resume), and
the number of its running children, so that its last child knows when to resume it. In turn, it uses the pointer to its
own parent’s activation record to resume the parent when it is the last child that terminates. Finally, the header
contains some data used for scheduling decisions: two numbers related to its scheduling priority (described later
in Section 3.5), and a Boolean indicating whether the function has been scheduled to run in the current instant.

Figure 11 also shows two helper functions used to allocate and free activation records. f’s enter function, shown
in Figure 14, uses enter_alloc from Figure 11 to allocate an activation record, before populating its f-speciic ields.
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Coniguration: ⟨�, �, �, �⟩ Rule Applied

〈

10 ,
let � = ref 0;
par after 2 � 3 ;wait �

wait � ; assign � 4
, {} , {}

〉

R-Ref

〈

10 ,
let � =�;
par after 2 � 3 ;wait �

wait � ; assign � 4
, {� ↦→ 0@10} , {}

〉

R-Beta

〈

10 ,
par after 2� 3 ;wait�

wait� ; assign� 4
, {� ↦→ 0@10} , {}

〉

R-After

〈

10 ,
par () ;wait�

wait� ; assign� 4
, {� ↦→ 0@10} , {� ↦→ 3@12}

〉

R-Beta

〈

10 ,
par wait�

wait� ; assign� 4
, {� ↦→ 0@10} , {� ↦→ 3@12}

〉

R-Wait

〈

10 ,
par suspend�

wait� ; assign� 4
, {� ↦→ 0@10} , {� ↦→ 3@12}

〉

R-Wait

〈

10 ,
par suspend�

suspend� ; assign� 4
, {� ↦→ 0@10} , {� ↦→ 3@12}

〉

S-Tick

〈

12 ,
par check�

check� ; assign� 4
, {� ↦→ 3@12} , {}

〉

R-Unblock

〈

12 ,
par ()

check� ; assign� 4
, {� ↦→ 3@12} , {}

〉

R-Unblock

〈

12 ,
par ()

() ; assign� 4
, {� ↦→ 3@12} , {}

〉

R-Beta

〈

12 ,
par ()

assign� 4
, {� ↦→ 3@12} , {}

〉

R-Assign

〈

12 ,
par ()

()
, {� ↦→ 4@12} , {}

〉

R-Join

⟨12 , () , {� ↦→ 4@12} , {} ⟩ Terminated

Fig. 10. How the semantics operates on an example that starts at time 10 by allocating a fresh variable x with value 0, then
starts two parallel tasks. The first task schedules x to become 3 ater 2 time units then waits for x to be writen; the second
waits on x before assigning it 4. Note that once the program has suspended for the instant, the S-Tick rule applies, advances
the time to the earliest queued event (at 12), writes x, and transforms each suspend to a check to wake them up. Note that
each of the rules except for S-Tick operates on the configuration through the S-Reduce rule.
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typedef struct { // Activation record

void (∗step)(act_t ∗); // Step function

act_t ∗caller ; // Where to return

uint16_t pc; // Saved control state

uint16_t children; // Number of children

uint32_t priority ; // Order in ready queue

uint8_t depth; // LSB of our priority

bool scheduled; // In ready queue

} act_t;

// Activation record management

act_t ∗enter_alloc(size_t size ,
void (∗step)(act_t ∗),
act_t ∗parent,
uint32_t prio,
uint8_t depth);

void leave(act_t ∗act , size_t size );
void activate(act_t ∗act );

Fig. 11. Generic activation record header used by the SSM runtime, alongside some API functions to help manage activation
records. Each top-level function has its own activation record type struct that begins with a generic act_t header so the
runtime can manipulate activation records generically.

f a =

let loc = ref 0 ; // Create a new reference łlocž

wait a ; // Wait for a write to reference argument a

loc ← deref a ; // Write the value in a to loc

par foo loc & bar a ; // Call foo and bar in parallel, passing loc and a

deref a // Return the current value of a

Fig. 12. An SSML function for illustrating how we compile SSML to C. This example features allocating, accessing, and
assigning to references; blocking on references, and parallel function calls.

typedef struct {
act_t act; // Common activation record header

value_t a; // Argument

value_t loc; // Local variable

value_t ∗ret ; // Return location

trigger_t trig ; // Trigger

} f_act_t;

Fig. 13. Activation record for the function in Figure 12, which starts with the activation record header (Figure 11)

Meanwhile, its step function, shown in Figure 15, calls leave before terminating, to free the record. leave also
decrements the number of children maintained by the parent, and reschedules the parent if f was the last child to
leave.

We heap-allocate activation records using our own memory allocator, discussed in Section 4.2.2. Others have
shown that allocating activation records on the heap gives similar performance to stack allocation [2], but makes
suspending and resuming processes much simpler to implement.

3.2 Representing values
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act_t ∗enter_f(act_t ∗parent, uint32_t prio, uint8_t depth, value_t ∗a, value_t ∗ret) {
f_act_t ∗act = (f_act_t ∗) enter_alloc(sizeof(f_act_t), step_f, parent, prio, depth);
act−>a = a; // Save argument

act−>ret = ret; // Save return location

act−>trig.act = &act−>act; // Register self in trigger

return &act−>act;
}

Fig. 14. Enter function for f in Figure 12, which uses enter_alloc to initialize the activation record header

void step_f(act_t ∗actg) {
f_act_t ∗act = (f_act_t ∗) actg;
switch (act−>act.pc) {
case 0: act−>loc = new_ref(pack(0)); // let loc = ref 0

sensitize(act−>a, &act−>trig); // wait a

act−>act.pc = 1; return;

case 1: desensitize(&act−>trig);
assign(act−>loc, act−>act.priority, deref(act−>a)); // loc <- deref a

uint8_t depth = act−>act.depth − 1; // par

uint32_t prio = act−>act.priority;
dup(act−>loc);
activate(enter_foo(&act−>act, prio, depth, act−>loc, NULL)); // foo loc
prio += 1 << depth;
dup(act−>a);
activate(enter_bar(&act−>act, prio, depth, act−>a, NULL)); // bar a

act−>act.pc = 2; return;

case 2: if (act−>ret) ∗act−>ret = deref(act−>a); // deref a

break;
}
drop(act−>loc); drop(act−>a); // Drop references falling out of scope

leave(&act−>act, sizeof(f_act_t)); // Free activation record

}

Fig. 15. Step function for the function in Figure 12

typedef union {
uint32_t packed_val;
struct mm ∗heap_ptr;

} value_t;

#deine on_heap(v) ((v).packed_val & 1 == 0)

#deine pack(v) (value_t) { .packed_val = ((v) << 1) | 1 }

#deine unpack(v) ((v).packed_val >> 1)

Fig. 16. Memory layout for the untyped runtime representation of SSML values and macros for testing and access
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typedef uint64_t time_t; // Unboxed model time

typedef struct { // Time values

uint8_t ref_count; // Reference count

uint8_t kind; // = TIME_K

time_t time; // Time of scheduled update

} time_obj_t;

value_t new_time(time_t init_time);
time_t read_time(value_t time);

Fig. 17. Representation of model time values on the heap.

typedef struct { // Reference

uint8_t ref_count; // Reference count

uint8_t kind; // = REF_K

time_t last_written; // When reference was written

time_t later_time; // Time of scheduled update

trigger_t ∗triggers ; // List of sensitive processes

value_t value; // Current value

value_t later_value; // Scheduled value

} ref_t ;

value_t new_ref(value_t init_val);
value_t deref(value_t ref );
void assign(value_t ref,

uint32_t prio,
value_t val );

void later(value_t ref ,
time_t time,
value_t val );

time_t last_written(value_t ref);

Fig. 18. Runtime representation and helpers for SSML references.

The value_t type used in f’s activation record to store arguments and local variables (Figure 13) is our runtime
representation for all SSML values. We use this uniformly-sized representation so that the rest of the runtime
system can handle these values without having treat types diferently.

Figure 16 shows the machine-word representation we use for values. For 32-bit processors (our main target), the
bits represent either a 31-bit integer or a pointer to a larger object on the heap, which we describe in Section 4.2.
On processors with 64-bit pointers, we restrict the integers to 31 bits for code portability.

The least signiicant bit of the machine word described by value_t distinguishes pointers from packed values
(integers): heap pointers are always word-aligned, so their LSB will always be 0; to distinguish them from pointers,
packed values always have an LSB of 1. This technique is typical in functional programming languages; we based
our implementation on OCaml [16].
SSML’s value encoding facilitates generating polymorphic code since it allows manipulating generic SSML

values (e.g., both integers and larger objects) without having to distinguish them at compile- or run-time. Figure 16
shows macros that test whether a value is a pointer to a heap object and for converting between normal C values
and packed SSML values.

We store SSML model-time values on the heap since they are 64-bit integers (Figure 17). This decision avoids
headaches arising from wraparound: with nanosecond precision, 64-bit wraparound only occurs once every 584
years; 32 bits aford us less than 5 seconds. Even with microsecond precision, 32-bit timestamps wrap around in a
little over an hour. new_time allocates a new time heap object (pointed to by a value_t), while read_time reads a
time value from the heap.

3.3 Scheduling references
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typedef struct { // Process trigger

act_t ∗act; // Triggered process

trigger_t ∗next; // Next trigger

trigger_t ∗∗prev_ptr; // Back pointer

} trigger_t;

void sensitize(value_t ref , trigger_t ∗trigger );
void desensitize(trigger_t ∗trigger );

Fig. 19. Linked list of triggers, used to wake up sensitive processes when a reference is writen

SSML references behave like traditional variables in imperative languages (i.e., they hold the value most
recently written to them, read using deref), augmented with the ability to schedule a delayed assignment and for
suspended routines to be reawakened by writes to a reference.

SSML allocates references on the heap using the type in Figure 18. In addition to its current value, references
also record when they were last_written; these ields are read using deref and last_written. Each reference may
have at most one new value scheduled for it in the futureÐa pending eventÐrecorded in the later_time and
later_value ields (later_time is ULONG_MAXwhen no event is pending). When later_time arrives, the later_value
is copied to value, and any processes waiting on that reference (tracked by the triggers list) are resumed.
The assign function implements instantaneous assignment, and updates the value and last_written ields of a

reference. In addition to the value being assigned to the reference, assign also takes the priority of the current
routine and only schedules sensitive routines with a higher priority number to be consistent with the semantics.
The later function implements delayed assignment: it saves the future value and time to later_value and

later_time and asks the runtime scheduler to queue the pending update event at later_time. If later is called on a
reference that already has a pending event, the existing event is overwritten, to avoid an unbounded accumulation
of events.

3.4 Suspending and resuming

A process may suspend for one of two reasons: it is blocking on an assignment to a reference (wait), or it is
blocking on called child processes to return (a function call or par). In Figure 15, f’s step function demonstrates
both scenarios. At each suspension point, the step function updates the activation record’s program counter
pc with a łreturn address,ž and returns from the step function. The next time the step function is invoked, the
switch statement resumes execution at the case corresponding to that program counter; in most cases, this case
immediately follows the return.
Before suspending, the step function conveys a wake condition to the scheduler so that it does not remain

asleep forever. When a process suspends due to a wait, it adds itself to the trigger list of each reference it waits
on. The trigger list is doubly-linked to facilitate fast removal; its node type deinition is shown in Figure 19. Each
node contains a pointer back to the waiting function’s activation record (initialized in the enter function, such
as in Figure 14), and is enqueued and dequeued using sensitize and desensitize. When a reference is written, the
scheduler traverses through its trigger list and schedules any sensitive processes to execute in that instant.

A process can reuse its triggers across diferent wait suspension points, but must use a unique trigger for each
reference it waits on. As such, its activation record needs to contain at least as many triggers as the maximum
number of references it waits on at once. f from Figure 12 only ever waits on a single reference, so its activation
record only needs a single trigger.
Processes also suspend when they spawn one or more child processes; they resume when all those child

processes terminate. In Figure 14, we see f’s enter function adds its parent (caller) to its activation record, so that
it can revisit its parent while leaving; enter_alloc also increments the parent’s children count. In Figure 15, f’s
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void leave(act_t ∗act , size_t size) {
act_t ∗parent = act−>parent;
free(act , size ); // Deallocate the full activation record

if (−−parent−>children == 0)

parent−>step(parent); // The last child resumes the parent

}

Fig. 20. Implementation of leave, which deallocates an activation record and may return to its parent

step function terminates the process when control breaks out of the switch statement. As shown in Figure 20,
after leave frees the given activation record, it decrements the children count of its parent. If this was the last
child leaving, it resumes its parent’s step function.

3.5 Function calls and priorities

SSML programs may use par to evaluate multiple functions in parallel, ordered according to their position in the
par expression. For instance, the main function calls foo and bar in parallel at line 10 of Figure 6, with foo taking
priority over bar. Single function calls are treated as unary parallel calls.

Our runtime does not directly support evaluating non-call expressions in parallel, such as the parallel wait in
line 2 of Figure 2. Instead, we transform these expressions to parallel function calls using an SSML source-to-source
translation. We recursively replace non-call parallel expressions with calls to lifted top-level functions, where
local variables that appear free in each expression are passed as arguments to the lifted function. For instance,
the sum function from Figure 2 is translated to

_wait r = wait r // Lifted from sum

sum r1 r2 r =
par _wait r1 & _wait r2 ;
after sec 1, r ← deref r1 + deref r2

At a par call site, the parent calls each child’s enter function to allocate their activation records (see Figure 14).
These are passed to activate, which schedules those child processes for execution.

Deterministic concurrency was a key SSML design goal. We achieve it in part by mandating that at each
instant, par operands further to the left must evaluate before operands to the right. In our formal semantics, this
evaluation order was enforced using an evaluation context that always awakens and checks the irst branch of a
par before the second branch. These wake-ups are wasteful since most wait statements will stay suspended in
most instants. Instead, when a reference is written, we only schedule each process that is blocked waiting on that
reference.
We force the scheduled processes to run in each instant in the order prescribed by semantics by assigning a

unique priority number to each active process. The scheduler then runs processes in priority order. In the case of
a single function call, the child simply inherits the priority of its parent, which is unambiguous because only one
of them is ever running at once.
When multiple function calls are evaluated using par, we assign priority numbers in a hierarchical manner

that subdivides the range of priority numbers allocated to the caller. Each process has a priority-depth pair, (�,�)
where � ≥ 2� , that indicates it owns priority numbers � through � + 2� − 1. When a process calls � children, it
assigns pairs (�,� ′), (� + 2�

′
, � ′), (� + 2 · 2�

′
, � ′), . . . , (� + (� − 1)2�

′
, � ′), where � ′ = � − ⌈log2 �⌉. The depth may

also be thought of as the index of the least signiicant bit in the priority.

ACM Trans. Embedd. Comput. Syst.



18 • John Hui and Stephen A. Edwards

For example, if a process has the pair (16, 4), it owns priority numbers 16 through 16 + 16 − 1 = 31 and calls
four children, the children are given pairs (16, 2), (20, 2), (24, 2), and (28, 2). And if the (24, 2) child in turn calls
two children, they would be given pairs (24, 1) and (26, 1). In Figure 15, the depth and priority variables and
related machinery dynamically compute the new priority-depth pairs at the call site for foo and bar.

Our runtime system uses 32-bit unsigned integers (uint32_t) to represent priorities and 8-bit unsigned integers
(uint8_t) to represent depths. This provides four billion unique priority numbers, although a pathological program
could exhaust them.

4 LANGUAGE RUNTIME IMPLEMENTATION

Our language runtime consists of a scheduler for executing a program’s threads during each instant, a memory
manager and allocator to provide programs with safe, dynamic memory, and platform-speciic code for interfacing
with the program’s environment. In this section, we describe the platform-agnostic scheduler and memory
manager, which allow us to execute SSML programs without considering any interactions with the external
environment.

4.1 The scheduler

The SSML runtime scheduler maintains two priority queues: the event queue, which holds references scheduled
to be updated, ordered according to their later_time ields; and the ready queue, which holds activation records
(functions) scheduled to run in the current instant, ordered by increasing priority ields. We implement both
as binary heaps whose maximum size can be determined if the program’s dynamic call graph can be analyzed
statically.

Our runtime event queue corresponds to the event queue � from our formal semantics. Meanwhile, the ready
queue avoids unnecessary work for processes that do not need to resume. While the S-Tick rule prescribes
reducing every redex of the running program, including check expressions that will immediately block again,
the ready queue avoids łbusy waitingž by maintaining only the set of processes that will unblock and run in the
current instant.

The scheduler exposes a tick function that runs the system for an instant. It does so in two phases: performing
all the reference updates queued for the instant, then running every process in the ready queue in priority order.
In the irst phase, performing an event consists of removing the reference at the front of the event queue

provided it is scheduled for the current instant now, updating its value and last_written ields, and then adding
each process waiting on the reference (held in its list of triggers) to the ready queue if it is not already there.
This phase ends when there are no pending events on the queue for the current time instant. Note that each
reference’s list of triggered processes is not modiied during this phase: the processes themselves are exclusively
responsible for managing their triggers.
In the second phase, the process with the lowest priority number is removed from the ready queue and its

step function invoked. The step function, in turn, may cause processes with equal or higher priority numbers to
be added to the ready queue, either through a call to activate (which may schedule another process at the same
priority) or through an assign call to a reference that triggers other processes at higher priorities.

The scheduler will terminate unless one of the activated functions refuses to suspend. Functions may contain
unbounded recursion or loops that perform multiple iterations in a single instant, but C does not guarantee that
they terminate. However, ininite loops that always eventually suspend work ine in SSML.

4.2 Memory management

Our runtime system implements automatic garbage collection based on reference counting and an allocator that
mimics malloc and free in systems where an existing allocator is inadequate or unavailable.
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struct mm {
uint8_t ref_count;
uint8_t kind;
// Payload

};

enum kind {
ADT_K,
REF_K,
TIME_K

};

struct adt { // Layout of an ADT object

uint8_t ref_count; // Reference count

uint8_t kind; // = ADT_K

uint8_t tag; // Code of data constructor

uint8_t ields ; // Number of payload ields (≥ 1)
value_t ield []; // Payload ields

};

Fig. 21. The layout of all heap-managed objects; the encoding of the kind field, and the layout of algebraic data types. The
ref_count field holds the number of pointers to the object; the kind field indicates how the rest of the object should be
interpreted.

void ∗alloc_page(void);
void ∗alloc_mem(size_t size);
void free_mem(void ∗p, size_t size);

Fig. 22. Platform-specific handlers for the memory allocator.

4.2.1 Reference-Counted Garbage Collection. The SSML runtime exposes reference counting primitives new, dup,
and drop to allocate, duplicate, and release heap objects. Objects are initialized with a reference count of 1, which
represents the number of live pointers to the object. The reference count is incremented by dup and decremented
by drop. When the reference count for an object reaches 0, the object is freed, and drop is called on all objects it
refers to. Our choice of a reference counted heap was inspired by the Perceus algorithm [25].

The reference count is maintained in the object’s memory management header, shown in Figure 21. The header
is placed at the start of each heap object and also contains a kind ield that indicates how to interpret the rest of
the object. When an object is freed, the memory manager uses the kind ield to determine where and how much
to scan for heap pointers to child objects.

The SSML runtime recognizes several kinds of heap objects: (user-deined) ADTs, references, and 64-bit model
time values. These are enumerated in Figure 21 and dictate the interpretation of each heap object. For instance,
for user-deined algebraic data types, kind = ADT_K, the tag ield encodes the data constructor used to create the
object, and ields indicates the number of value_t elements in the ield array.
Each kind of object has its own new function, which calls the allocator to obtain memory for the object and

initializes the ref_count and kind ields along with others depending on the kind.
The dup function takes a pointer to any kind of object and increases its reference count.
The drop function is the most complicated. It decrements the ref_count ield and if it has reached zero, consults

the kind ield to determine what children to drop, if any, before freeing the object. For ADTs, drop recursively
calls drop on each of its ields (whose number is given by ields). For references, drop calls drop on its value and
later_value ields (Figure 18).

4.2.2 Allocation. To ensure responsiveness and avoid fragmentation, the SSML runtime uses an allocator that
dispenses cells from one of several memory pools. Each memory pool is responsible for allocating cells up to
a certain size, and maintains a free list of available cells. Memory is allocated from the smallest cell-size pool
capable of accommodating the requested size. This segregated-its allocation scheme wastes some memory to
ensure that the free list can be queried in constant time.
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Thememory used by the SSM allocator is acquired from the operating system on demand so that the distribution
of space among the memory pools can dynamically adapt to the needs of the application. To ensure platform-
independence, the allocator uses three platform-speciic allocation handler functions, listed in Figure 22. The
allocator uses alloc_page to request a page of memory from the operating system. These pages can be added
to memory pools on demand or pre-allocated if the allocator is given hints when it starts that indicate many
impending allocations of a particular size.

The number of memory pools is conigured at compile time, and remains constant throughout the execution of
SSML programs. If the SSML program attempts to allocate memory larger than the largest pool cell size, the SSM
allocator falls back to the system-provided alloc_mem handler, which must be capable of allocating arbitrarily
large ranges of memory or throw a fatal error. Memory allocated by this handler is freed using the free_mem
handler. The use of these handlers is transparent to the SSML user program.

5 INTERFACING WITH THE REAL WORLD

Like other synchronous languages, SSML prescribes temporal behavior in terms of model time, and presents
the iction of an ininitely fast processor to ensure that the semantics of real-time programs are independent
of the actual platform speed. This isolation from the external environment is relected in our runtime system’s
platform-agnostic core (described in Section 4): tick has no control over the physical time at which code is
executed.
To enable meaningful execution within the real-world environment, the runtime includes platform-speciic

drivers to manage interactions with that environment according to each platform’s own capabilities and runtime
model. For instance, the driver is responsible for calling tick according to the passage of physical time, informed
by platform-provided timers.
The driver is also responsible for punctually conveying data from and to peripheral devices via input and

output references, which are arguments passed to a program’s main function. An input handler timestamps each
input event before delivering it to the runtime event queue; each output reference is given a concurrently running
output process that waits for an update before emitting the value to the environment.

In reality, the iction of an ininitely fast processor can be maintained by a łfast-enoughž processor always able
to perform the computation needed in each instant before the arrival of the next. However, whether a processor
is łfast enoughž depends on its speed, the program it is expected to execute (e.g., its worst case execution time),
and the rate at which environmental inputs arrive, making it a diicult property to prove. We recognize that
establishing schedulability is important, but it remains a challenging aspect of our approach; we plan to tackle
this problem in future work. For the moment, our runtime system can report observed scheduling failures.
In this section, we describe the design considerations and implementation requirements common to all

platforms’ drivers. We have implemented a driver for the Zephyr real-time operating system, which allows us
to run SSML programs on a wide range of embedded systems, along with one for POSIX, which enables us to
experiment on desktop workstations.

5.1 Timing and external input

Calling tick advances model time (now) to that of the next event in the queue. We can run SSML programs łin
simulationž like any discrete-event model by repeatedly calling tick, without regard for physical time. While this
is useful for compiler testing, such simulations do not interact with the real world as prescribed by the program.

Drivers leverage platform timing capabilities to implement real-time behavior. While timer APIs difer vastly
across platforms, running programs łin real-timež is still straightforward, provided some capability to sleep or
block until a speciied physical time (usually implemented using some sort of free-running timer).
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Fig. 23. The SSML runtime’s input handling architecture.

External inputs are gathered by concurrent interrupt service routines (ISRs) and ultimately appear as updates
to SSML input references. Handling these inputs complicates the tick loop, which contends with two challenges.
First, inputs may arrive at any point: asynchronously updating the input reference in the ISR while tick is running
may corrupt system state. Second, the tick loop must ensure that model time advances monotonically: it should
only tick once the corresponding physical time has passed, to ensure that it has accounted for any possible inputs
before that time.

Our solution adds an input queue to manage input events from the ISRs (i.e., distinct from the scheduler’s event
and ready queues) and a semaphore to wake up the (potentially sleeping) tick loop thread. Figure 23 illustrates
this input handling architecture. An ISR gathers an input, timestamps it, places it in the input queue, and posts to
the semaphore. The tick loop sleeps by waiting on this semaphore with an alarm scheduled to post when the
sleep period is over. The tick loop collects input events from the input queue, forwards them to the event queue,
and calls the scheduler’s tick to run an instant.

Maintaining an input queue distinct from the scheduler’s event queue avoids excessive synchronization costs.
The input queue is loaded asynchronously by ISRs and emptied by the tick loop, but it is a simple ring bufer
that is easy to make thread-safe. By contrast, the scheduler event queue is a priority queue to which events are
added and sometimes removed out-of-order by the tick loop and running SSML processes. However, because
these run synchronously, the scheduler event queue is never accessed asynchronously and does not need to be
made thread-safe.

Figure 24 shows an input interrupt handler. It irst records the system’s current physical time, then attempts to
enqueue an event with that timestamp and any new data from the peripheral in the input queue: a ring bufer
large enough to accommodate a modest backlog of input events before having to drop new ones. Enqueue and
dequeue operations are performed in-place via an allocate/commit and peek/release protocol to minimize copying.
The ISR obtains an irq_lock because recording the current system time as quickly as possible and allocating

space in the input queue is critical to ensure enqueued input events appear with non-decreasing timestamps,
at the cost of temporarily disabling nested interrupts. Higher-priority interrupts may occur while processing a
lower-priority interrupt, but only after the timestamp of the lower priority interrupt has been captured and its
position in the queue guaranteed.
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struct input_event {
time_t time; // Timestamp

value_t data; // Peripheral data
value_t ref ; // Target reference

};

void input_isr(device ∗dev) {
int key = irq_lock();
time_t input_time = timer_read();
struct input_event ∗event = input_alloc();
irq_unlock(key);
if (event == NULL) return; // Queue is full!

event−>time = input_time;
event−>ref = input_binding(dev);
event−>data = input_read(dev); // Device-speciic
input_commit(); // Enqueue input event

sem_post(sem); // Wake up tick thread

}

Fig. 24. The type of input queue events and a peripheral interrupt service routine. Each peripheral has a device-specific ISR
like this one.

semaphore_t sem; // Operating system semaphore

void alarm_isr(void) { sem_post(sem); } // Called when alarm goes of

void tick_loop(void) {
init (); // Initialize the SSML scheduler

tick (); // Start the program at time zero

for (;;) {
time_t real_time = timer_read(); // Get physical time

time_t mtime = next_time(); // Get model time: the next scheduled event

struct input_event ∗input = input_peek(); // Read the next queued input event, if any

if (input && input−>time <= mtime) { // Is there also an event from the environment?

schedule_input(input); // Add input to event queue

input_release(); // Input dequeue

} else if (mtime <= real_time) { // Has the model fallen behind real time?

tick (); // Run the system; advance model time

} else if (mtime != NO_EVENT) { // Is there a future event scheduled?

if (timer_set_alarm(mtime, alarm_isr)) { // Set alarm for next event. Is it in the future?

sem_wait(sem); // Wait for alarm or environmental input

timer_cancel_alarm(); // An input event should cancel the alarm

sem_reset(sem); // If timer collides with input event

} // Next event is in the past; do not sleep

} else { // Nothing pending; wait for the environment

sem_wait(sem); // Wait for environmental input

} } }

Fig. 25. The runtime tick loop, which gathers events from the input queue, runs tick to advance model time, then sleeps until
the next scheduled event or an interrupt.
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Figure 25 shows the tick loop, which waits on an OS-provided semaphore (sem) that is posted by an ISR from
either a peripheral or the system clock. At each iteration of the tick loop, the runtime checks the input queue for
events to schedule in the event queue. Events in the input queue will be in increasing order since we assume the
system timer advances monotonically. Pending inputs are forwarded. However, if the model time of the SSML
program is running behind physical time when some external input is received, that is, if input−>time > mtime,
or if there is no pending input event, the runtime executes the SSML program by calling tick. Finally, if there are
neither input events to process nor internal events ready to execute, the main thread goes to sleep, blocking on a
semaphore until either its timer expires or some fresh input appears. Upon waking, the tick loop cancels the timer
ISR and resets the semaphore to prevent stale posts on the semaphore lingering into the following loop iterations.

5.2 Handling external outputs

Just like inputs, output peripherals are bound to regular SSML references; writes to those references are sent to
the environment as output. Under the hood, writes to such references trigger some system-provided function
that actually transmits the output to the peripheral.

To determine when to call such output functions, we reuse our runtime’s sensitivity machinery to determine
when an output reference is updated. We maintain output handler processes which remain active and sensitized
to the bound output reference. Those processes encapsulate communication with each output peripheral, in
SSML handler functions that look like

handle out =
while True do
wait out ;
peripheral_output (deref out)

Here, peripheral_output represents the platform- and peripheral-speciic work the output handler must do to
forward the value of out to the environment. Adding a new peripheral amounts to deining a new output handler
function according to this template. We plan to add a foreign function interface to SSML so that output handlers
can be directly implemented in SSML code like this.
The runtime scheduler runs output handlers last in each instant so that they are sensitive to instantaneous

assignments by all processes. In SSML, these processes may be thought of as scheduled parallel to the main
process by some łrealž entry point, _start, e.g.,

main led1 led2 = ...

_start led1 led2 =

par main led1 led2
& handle led1
& handle led2

We chose to implement output handlers as low-priority processes because it ensures a sound real-world
interpretation for logically simultaneous updates. A program may assign a reference multiple times in a single
instant,for example, turning an LED on and of łat the same time.ž The zero-time model of execution means
such multiple writes occur simultaneously, which is meaningless to real-world peripherals; handling each write
immediately may produce lickering or glitch behavior that should not be externally visible. By only responding
to the last write of any instant, our output handlers ensure that peripherals are updated at most once each instant
with only its łstabilizedž value.

A shortcoming of our approach is that outputs do not appear in the real-world until the end of computing an
instant. SSML’s semantics say that an instant executes in zero model time, but in practice any computation takes
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physical time. A sporadically intensive workload may lead to varying output latency, causing jitter that may be
unacceptable for real-time workloads. An alternative is to schedule output handlers before the main process, e.g.,

main led1 led2 = ...

_start led1 led2 =

par handle led1
& handle led2
& main led1 led2

Assuming that output handlers are reasonably eicient, this alternative ensures that output efects are emit-
ted punctually without being delayed by long-running instants. However, this approach precludes efectful
instantaneous assignments, which we want SSML to support for semantic consistency.

We plan to explore having the user specify how output handlers should be scheduled relative to other processes,
so that users can control the trade-of between the punctuality and expressiveness of output references for their
application. Because these handlers are implemented as regular processes, this endeavor requires no additional
runtime support, so we are limited only by the expressiveness of our language. In some cases, it may be possible
for the compiler or runtime to infer whether an output handler’s priority can be safely boosted without afecting
the behavior of the program.

6 EVALUATION

We tested the performance of our Zephyr-targeted runtime system by subjecting SSML programs to varying
loads. We performed these experiments on a Nordic Semiconductor NRF52840-DK board, which has a 64MHz
Cortex-M4 processor, 256 kB RAM, and 1MHz lash; it is conigured to use an of-chip 16MHz crystal oscillator
as its physical time base. To produce high input loads, we connected a signal generator to the GPIO pin mapped
to one of the NRF52840’s buttons. We measured the output response using an oscilloscope connected to the GPIO
pin mapped to one of the NRF52840’s LEDs.

6.1 Frequency counter

To assess our implementation’s resilience to high input load, we tested the frequency counter shown in
Figure 26. This program measures the frequency of button presses by counting the number of input events each
second. The reported count is double the frequency, corresponding to the two input events of a square wave.
For benchmarking purposes, we inserted a print statement in the generated C code to report the frequency; the
program alternates between counting and reporting to ensure that the overhead of reporting the frequency does
not interfere with the frequency counting at high loads.
The reference button is bound to switch 0 on the NRF52840-DK; we connected a function generator to the

corresponding GPIO pin and generated pulses at various frequencies. Our results are shown in Table 1. We found
that our frequency counter was capable of measuring events of up to 29 kHz (input frequency of 14.5 kHz), with
error within 2Hz. Above this, the input event queue illed up faster than the counter was able to empty it, leading
to events being dropped and the program thrashing. However, the frequency counter recovered gracefully from
such an overload situation after we lowered the input frequency below 14 kHz.

6.2 Buton-to-blink

To better understand how the system behaves without any signiicant computational load, we evaluated a
łbutton-to-blinkž program, shown in Figure 27. This program immediately lights an LED when a button is pressed,
and turns the LED of when the button is released. We schedule the LED handler after the main b2b program so
the instantaneous assignment is sent to the LED at the end of the instant.
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freqCount button output =
let count = ref 0 ;

let gate = ref () ;

after (sec 1), gate← () ;
while True do
if written gate == now

then

output← deref count ;
count←
if written button == now

then 1 else 0 ;

after (sec 1), gate← () ;
wait gate; // Sleep for 1 sec
after (sec 1), gate← ()

else

count← deref count + 1 ;
wait gate | button

Fig. 26. A frequency counter program.

Input frequency Count

6 kHz 12000 ± 0 µs
7 14000 ± 1
8 16000 ± 1
9 16000 ± 1
10 20000 ± 1
11 22000 ± 1
12 24000 ± 1
13 26000 ± 1
14 28000 ± 1
15 (events dropped)

Table 1. Frequency counter measurements. The measured count is
twice the input frequency because it counts both the rising and falling
edges of the input signal.

b2b button led =

while True do
wait button ;
led ← deref button

Fig. 27. The buton-to-blink program.

Frequency Latency Jitter

2 kHz 60.0 µs 0.7 µs
4 60.6 0.7
6 49.7 0.5
8 52.1 13.1
10 47.3 34.0
12 45.6 24.0

Table 2. Latency and jiter measurements on the buton-
to-blink program (Figure 27).

The łinstantaneousž assignment in b2b incurs a practically avoidable but theoretically signiicant amount of
latency, which we call the at-rest input latency, �� . This value represents the duration between the system waking
from sleep and responding to an external input. From proiling our button-to-blink program, we found that �� for
our NRF52840-DK is approximately 60 µs.
If the system continuously receives inputs at a frequency above 1/�� , the system will not be able to process

one input before receiving the next, making �� a signiicant number. As the system falls farther behind physical
time, its behavior degrades to that of an asynchronous system running as fast as it can, without the temporal
behavior from the underlying SSML program.

A related metric is the in-light input latency, � � , which is the time it takes for the system to respond to external
input when it is already busy. When events arrive separated by less than � � , the input queue will be populated
with new events by the time the main tick loop thread checks it again, meaning it can resume ticking without

ACM Trans. Embedd. Comput. Syst.



26 • John Hui and Stephen A. Edwards

User code

Tick loop

Input ISR

Zephyr18.3
3.3 5.8

6.0

14.3 11.6
2

11.8

ISR dispatch

enqueue post

context switch schedule tick 

step 

sleep

60μs latency
button press LED blink

Fig. 28. Timeline of a single buton press of the łbuton-to-blinkž program from Figure 27, reconstructed from profiling codes
emited on GPIO pins. All time values are measured in µs.

putting itself to sleep. � � is shorter than �� because the time spent going to sleep and waking back up is eliminated.
We experimentally determined that � � for our NRF52840-DK running b2b is approximately 45 µs.

Sparse bursts of events do not necessarily cause the system to overload, provided the system is given a chance
to catch up between bursts. The system may even be able to keep up if it is consistently stimulated with a
period between �� and � � . As shown in Table 2, the łbutton-to-blinkž program was able to sustain activity when
stimulated by a pulse generator with frequencies of 12 kHz; beyond 12 kHz, the program begins to thrash and
drop input events. However, when the delay between successive events is less than �� , the computation time per
instant becomes less predictable, even as the system remains responsive. In Table 2, this manifests in increased
jitter at input frequencies above 8 kHz, at which a square wave has a half-period of 62.5 µs.
To determine the breakdown of our system’s �� of 60 µs, we proiled b2b during a single button press and

obtained the timeline shown in Figure 28. We did so by emitting 4-bit codes on unused GPIO pins at certain
points in the execution of our runtime system and recording them with a logic analyzer. We then analyzed the
recorded data to determine how long the system is spending between these events. Although each GPIO write
takes 60 ns, this duration is negligible compared to other latencies. We ind that of the overall latency, 24.3 µs is
due to Zephyr’s own ISR and process scheduling facilities. A further 5.8 µs is introduced by Zephyr’s semaphore
implementation, when we call sem_post from the ISR to wake up the tick loop thread. The �� of 60 µs measured
here is consistent with the timing recorded in Table 2.

6.3 Signal generator

We also measured the highest frequency (shortest period) a signal generator program such as Figure 1 could
generate. For the purposes of evaluation, we used a modiied version that adjusted the half-period hperiod in
linear increments of 2 µs. We found that it could reliably generate signals with a 76 µs half-period (approaching
� � ), corresponding to a frequency of about 6.6 kHz. Even at this frequency, our signal generator exhibited less
than 500 ns of jitter, the minimum we could measure with our oscilloscope. At half-periods between 70 µsś76 µs,
we observed signiicant degradation in signal accuracy and consistency: the output signal’s half-period luctuated

ACM Trans. Embedd. Comput. Syst.



The Sparse Synchronous Model on Real Hardware • 27

between 60.2 µs and 83.4 µs. At even shorter half-periods, the system ceased to output any signal while it was
computationally overwhelmed. However, the signal generator was able to recover without a reset when we
increased the half-period back above the 76 µs threshold: the system would output a brief, high-frequency burst
as it caught up with physical time, before resuming correct behavior.

7 RELATED WORK

7.1 Discrete-event languages

The Lingua Franca (LF) coordination language [17, 18] has many parallels with SSML. LF is inspired by the same
foundations of discrete-event simulation [15] and the Ptides programming model [31, 32] as SSML; its execution
model also uses two priority queues to schedule pending events and computation, sparing tick the need to run
in every instant. In LF, locally stateful łreactorsž (like SSML processes) send each other discrete, timestamped
events via łportsž (like SSML channels).
The key diference is that LF demands and utilizes far more knowledge of the structure and behavior of

its systems, trading lexibility for analyzability. LF ixes the topology of all reactors at compile time, statically
determining reactor execution order based on explicit data dependencies and insisting on minimum reactor delay
times to reject causality violations. By contrast, SSML allows processes to spawn other processes at runtime,
forming a dynamic process tree where the execution order is computed using the priorities obtained from parallel
function call sites.

Verilog [13] and VHDL [28] inspired some aspects of SSM, while also warning us of nondeterministic pitfalls.
Both are imperative discrete-event simulation languages for modeling digital hardware, and use variables that
convey events (signals in VHDL; nets and regs in Verilog). SSML’s assignment and after parallel Verilog’s blocking
and non-blocking assignments.

VHDL exposes far more of the discrete-event machinery to the user, e.g., allowing her to control the iltering of
closely spaced events (transport vs. inertial delay), test for the presence of events, and even check for the absence
of events over a prescribed period of time.
We wanted SSML to have the same power as VHDL’s wait, which can wait for three things: an event on a

signal (like SSML); a condition (e.g., wait until CLK ′event and CLK=’1’); and a period of time (e.g., wait for 10
ns). This felt too rich for an SSML primitive, so we adopted the approach of the FreeHDL compiler [22], whose
runtime can only wait on a set of signals. FreeHDL implements VHDL’s wait for conditions by generating code
that alternates between checking the condition and waiting for an event on any of the condition’s input signals.
Waiting for a timeout schedules an event on a (synthesized) timeout signal then waits on that signal (Figure 5).

A key advantage of SSM is its use of a separate semantics for dealing with events in a single instant, unlike
traditional discrete-event models. SSM could be modeled with superdense time [14] where the timestamp at which
each process executes also includes its priority. This approach gives SSM its determinism and sidesteps such
infelicities as VHDL’s delta cycles [28].

7.2 Synchronous languages

SSM’s intra-instant semantics are rooted in the synchronous languages Lustre, Esterel, and Signal, which gave
a formal foundation for the semantics of synchronous computing with deterministic concurrency [4]. These
languages do not support dynamic process creation, runtime scheduling, or recursion, which allows each program
to be compiled to a single tick function that evaluates the whole system for an instant. The runtime simply calls
this tick function in a periodic loop. This łheartbeatž model works well for continuously evolving systems, but
ticks unnecessarily for reactive applications with sparse, irregular workloads. SSM assumes that events are sparse,
so its runtime only calls tick when needed; in most instants, no computation takes place.
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While Lustre and Signal are datalow languages, Esterel is imperative like SSML: Esterel programs describe
processes by their control low [5]. Yet Esterel institutes a single-value-per-instant rule for signal values (signal
coherence), and insists that all readers of a signal execute after writers, so the execution order of parallel processes
is determined by their implicit causality. Yet causality analysis is diicult to explain and implement [23], and
rejects programs with read-modify-write behavior (e.g., Figure 6). Sequentially constructive concurrency [27, 30]
relaxes signal coherence to allow signals with multiple values per instant, provided those values are totally
ordered by explicit sequencing, but is even more complex. SSML uses a simpler syntactic total order from par

expressions, foregoing the need for causality analyses.
Reactive C takes a diferent approach to maintain causality while avoiding the overhead of causality analysis [7].

Reactions to the absence of signals are delayed by one instant, ensuring causality by construction. ReactiveML
builds on this insight to incorporate synchronicity and valued signals in an ML-like language with irst-class
functions and ADTs [19, 20]. ReactiveML also delays processes waiting on valued signals by one instant. In
contrast, SSML’s sparse model of time lacks the notion of a "next instant," and its semantics do not insist on this
notion of causality. In SSML, processes may check whether a reference r has been assigned in the current instant
using written r == now.

We were also inspired by Boussinot’s ordering of concurrent routines to achieve determinism, at the heart of
FairThreads [8] and FunLoft [9]. However, Boussinot’s execution strategy searches for Esterel-like ixed-points,
using a round-robin cooperative scheduler that repeatedly evaluates concurrent routines in order until they
quiesce. For example, in SSML, par foo & bar runs foo then bar once each in an instant; Boussinot would also run
foo then bar, but allows foo and bar to resume (e.g., if one routine wrote to a variable on which the other was
blocked). This repeats until each routine either terminates or suspends on an untouched variable. Boussinot’s
iterations enable instantaneous bidirectional communication among processes, but their execution time is diicult
to bound. Also, confusingly, the lexicographic order of concurrent routines still matters in Boussinot’s world.
SSML adopts a more rigid, faster policy that is simpler to explain.
Hanxleden, Bourke, Girault, and others [6, 29] show how giving an Esterel program the ability to schedule

when it should be awakened after the end of each tick enables far richer temporal behavior. Their proposal,
however, leaves the subtle calculation of this single number to the program itself. Their solution [29] efectively
implements a crude event queue in Esterel where, at each tick, each pending delay action reports its desired
wake-up time to a global signal that computes the earliest event and reports that to an external timer. SSML uses
a much more eicient priority queue that avoids each delay having to do something at each tick.

Both Céu and PRET-C employ many of the same ideas as SSML to overcome Esterel’s complexity [1, 26]. Both
languages determine the execution order of parallel branches by their syntactic order, though Céu discourages
the use of non-commutative par branches. According to this order, earlier writes are overwritten by subsequent
writes in the same instant, like SSML. Both also empower the programmer to program in terms of physical time:
Céu supports blocking for a concrete duration (e.g., await 2ms), while PRET-C leverages worst-case reaction
time analysis and precision-timed hardware guarantees to tell the programmer the physical duration of each
logical tick. However, Céu and PRET-C are statically scheduled and memory-bounded; though these are attractive
properties for real-time applications, they also come at the cost of language expressiveness. SSML strikes a
diferent balance between eiciency and expressive power to support languages features such as recursion and
heap allocation.

8 FUTURE WORK AND CONCLUSIONS

We presented the Sparse Synchronous Model via a language with parallel function calls and blocking waits on
writes to shared references, which may be scheduled in the future to provide temporal control. We discussed
the semantics of our model and presented an eicient runtime system with two priority queues: one for events,
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and the other for ready-to-run routines. The result is a deterministic formalism that supports precise timing
speciication, concurrency, and recursion.

Our end goal is a user-friendly language built on SSM’s semantics; the SSML language we present here is a step
toward that. We are extending SSML into a richer functional language with arrays, irst-class functions, and type
classes. A foreign function interface will be useful for supporting peripherals in the embedded applications we
will write; robust compile-time facilities and domain-speciic optimizations will help our programs run eiciently
on low-powered hardware.

We will continue to improve our runtime’s reliability and responsiveness. Our current tick loop only advances
model time once the corresponding physical time has passed, in case of then-unknown real-time inputs that may
interrupt the passage of model time. This conservative approach means that each instant is always completed
slightly late. We intend to experiment with distributed implementation techniques proposed for Ptides, and
execute instants early when it is safe to do so [33]. Our use of the depth value limits the call depth of par
expressions with two or more operands; to overcome this limitation, we plan to implement Dietz and Sleator’s
list-range relabeling algorithm [3, 11] as a solution to the order-maintenance problem. We hope to statically
determine when we can relax SSM’s strict child-ordering rules without introducing nondeterminismÐperhaps
using Rust-like ownership types [21]Ðto enable parallelism.
The temporal semantics speciied by SSM programs mean that they convey a very precise model of when a

system is active or idle. In particular, idle periods are abundant for the sparse workloads we envision. We believe
our memory manager can exploit this knowledge and defer certain routines to idle cycles. For example, dropping
the last remaining reference to a linked list entails iterating through the entire list and dropping every single
node. When the linked list is long, doing so wastes precious cycles when there may be more urgent tasks in that
instant. A lazier approach that defers memory management to idle periods may lead to better responsiveness,
without much of the guesswork involved in traditional, non-synchronous memory management.
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[24] Fraņois Pottier and Didier Rémy. 2004. The Essence of ML Type Inference. In Advanced Topics in Types and Programming Languages,

Benjamin C. Pierce (Ed.). MIT Press, Cambridge, Massachusetts, Chapter 10.
[25] Alex Reinking, Ningning Xie, Leonardo de Moura, and Daan Leijen. 2021. Perceus: garbage free reference counting with reuse.

In Proceedings of the 42nd ACM SIGPLAN International Conference on Programming Language Design and Implementation. ACM.
https://doi.org/10.1145/3453483.3454032

[26] Rodrigo C. M. Santos, Guilherme F. Lima, Francisco Sant 'Anna, Roberto Ierusalimschy, and Edward H. Haeusler. 2018. A memory-
bounded, deterministic and terminating semantics for the synchronous programming language Céu. In Proceedings of the 19th ACM

SIGPLAN/SIGBED International Conference on Languages, Compilers, and Tools for Embedded Systems. ACM. https://doi.org/10.1145/
3211332.3211334

[27] Steven Smyth, Alexander Schulz-Rosengarten, and Reinhard von Hanxleden. 2019. Practical Causality Handling for Synchronous
Languages. In Proceedings of Design, Automation, and Test in Europe (DATE). Florence, Italy, 1281ś1284. https://doi.org/10.23919/DATE.
2019.8715081

[28] The Institute of Electrical and Electronics Engineers (IEEE) 1988. IEEE Standard VHDL Reference Manual (1076ś1987). The Institute of
Electrical and Electronics Engineers (IEEE), New York, New York.

[29] Reinhard von Hanxleden, Timothy Bourke, and Alain Girault. 2017. Real-Time Ticks for Synchronous Programming. In Forum on

Speciication and Design Languages (FDL). Verona, Italy. https://doi.org/10.1109/FDL.2017.8303893
[30] Reinhard von Hanxleden, Michael Mendler, Joaquín Aguado, Björn Duderstadt, Insa Fuhrmann, Christian Motika, Stephen Mercer,

Owen O’Brien, and Partha Roop. 2014. Sequentially Constructive ConcurrencyÐA Conservative Extension of the Synchronous Model of
Computation. ACM Transactions on Embedded Computing Systems 13, 4s (July 2014), 144:1ś144:26.

[31] Yang Zhao, Jie Liu, and Edward A. Lee. 2007. A Programming Model for Time-Synchronized Distributed Real-Time Systems. In
Proceedings of Real-Time Technology and Applications Symposium (RTAS). 259ś268. https://doi.org/10.1109/RTAS.2007.5

[32] Jia Zou. 2011. From Ptides to PtidyOS, Designing Distributed Real-Time Embedded Systems. Ph. D. Dissertation. EECS Department,
University of California, Berkeley.

ACM Trans. Embedd. Comput. Syst.

https://doi.org/10.1002/cpe.919
https://doi.org/10.1145/99583.99616
https://doi.org/10.1145/28395.28434
https://doi.org/10.1109/FDL50818.2020.9232938
https://doi.org/10.1007/978-3-540-31954-2_2
https://xavierleroy.org/talks/compilation-agay.pdf
https://xavierleroy.org/talks/compilation-agay.pdf
https://doi.org/10.1145/3448128
https://doi.org/10.1145/2790449.2790509
https://doi.org/10.1145/1069774.1069782
https://doi.org/10.1145/2692956.2663188
https://doi.org/10.1145/2692956.2663188
http://freehdl.seul.org/
http://www.springer.com/prod/b/978-0-387-70626-9
http://www.springer.com/prod/b/978-0-387-70626-9
https://doi.org/10.1145/3453483.3454032
https://doi.org/10.1145/3211332.3211334
https://doi.org/10.1145/3211332.3211334
https://doi.org/10.23919/DATE.2019.8715081
https://doi.org/10.23919/DATE.2019.8715081
https://doi.org/10.1109/FDL.2017.8303893
https://doi.org/10.1109/RTAS.2007.5


The Sparse Synchronous Model on Real Hardware • 31

[33] Jia Zou, SlobodanMatic, Edward A. Lee, Thomas Huining Feng, and Patricia Derler. 2009. Execution Strategies for PTIDES, a Programming
Model for Distributed Embedded Systems. In Proceedings of Real-Time Technology and Applications Symposium (RTAS). San Francisco,
California, 77ś86. https://doi.org/10.1109/RTAS.2009.39

ACM Trans. Embedd. Comput. Syst.

https://doi.org/10.1109/RTAS.2009.39

	Abstract
	1 Introduction
	2 Semantics
	2.1 Informal presentation
	2.2 Formal semantics

	3 Compiling SSML
	3.1 Compiling functions
	3.2 Representing values
	3.3 Scheduling references
	3.4 Suspending and resuming
	3.5 Function calls and priorities

	4 Language Runtime Implementation
	4.1 The scheduler
	4.2 Memory management

	5 Interfacing with the Real World
	5.1 Timing and external input
	5.2 Handling external outputs

	6 Evaluation
	6.1 Frequency counter
	6.2 Button-to-blink
	6.3 Signal generator

	7 Related Work
	7.1 Discrete-event languages
	7.2 Synchronous languages

	8 Future Work and Conclusions
	Acknowledgments
	References

